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High-throughput sequencing can be used to measure changes in tumor
composition across space and time. Specifically, comparisons of
pre- and post-treatment samples can reveal the underlying clonal dynamics
and resistance mechanisms. Here, we discuss evidence for distinct modes
of tumor evolution and their implications for therapeutic strategies. In
addition, we consider the utility of spatial tissue sampling schemes,
single-cell analysis, and circulating tumor DNA to track tumor evolution
and the emergence of resistance, as well as approaches that seek to forestall
resistance by targeting tumor evolution. Ultimately, characterization of the
(epi)genomic, transcriptomic, and phenotypic changes that occur during
tumor progression coupled with computational and mathematical modeling
of tumor evolutionary dynamics may inform personalized treatment
strategies.

Missing the Target by Focusing on Targeted Approaches Alone
The past two decades have brought about a bevy of targeted cancer therapies, including
monoclonal antibodies and small molecules, that block immune checkpoints, interfere with
cancer signaling pathways [1], or affect specific genetic vulnerabilities in tumors – for
example, poly-ADP ribose polymerase (PARP) inhibitors [2]. The decision to treat with
targeted therapy is typically based on the presence of a biomarker (such as a gene mutation
or amplification) in a single tumor specimen. For certain cancers, targeted therapies have
revolutionized patient care. Imatinib yields 5-year survival rates of 95% for patients with
chronic myeloid leukemia [3]. Unfortunately, for many solid tumors, response to targeted
therapies is often 50% or lower [4]. Resistance to treatment can be classified as primary,
describing patients who exhibit no response to treatment at all, or secondary, describing
patients who initially respond to treatment, but later develop resistance, as the cells that are
sensitive to treatment die and the resistant cell population continues to grow. As an example
of secondary resistance, in BRAF-mutant (V600E) melanoma, treatment with the tyrosine
kinase inhibitor vemurafenib yields dramatic initial responses, but most patients eventually
relapse with drug-resistant, deadly disease [5]. Similarly, HER2-amplified and/or over-
expressing breast cancer tumors treated with the HER2-targeted monoclonal antibody
trastuzumab also commonly exhibit resistance [6] and many patients who initially respond
subsequently exhibit disease progression [7]. In colorectal cancer patients with EGFR-
mutant, wild-type KRAS tumors, treatment with cetuximab yields a dismal objective tumor
response rate of less than 15% [8], indicating that many tumors do not respond to treatment,
and hence had primary resistance. Efforts to understand the complex mechanisms of
resistance in preclinical models [9] and via tissue correlative studies highlight the many paths
to resistance [10–13], which may not be fully elucidated by traditional, single-sample diag-
nostic tissue analysis.

Highlights
Cancer is a multiscale system and a
detailed understanding of the
dynamics of tumor progression and
the development of resistance neces-
sitate spatial and longitudinal genoty-
pic and phenotypic measurements,
coupled with computational modeling.

Multiregion sequencing provides
important spatial information related
to subclone architecture and tumor
growth dynamics. While longitudinal
sampling via repeat tissue biopsies is
generally intractable, ctDNA can be
assayed in a noninvasive fashion and
provides information about overall
tumor burden, minimal residual dis-
ease, and clonal dynamics during
therapy.

Although single-agent targeted thera-
pies commonly result in resistance,
other regimens that contend with
and capitalize on tumor evolution (such
as adaptive therapy, immunotherapy,
and combination therapy) have the
potential to forestall it.

1Cancer Biology Program, Stanford
University School of Medicine,
Stanford, CA 94305, USA
2Stanford Cancer Institute, Stanford
University School of Medicine,
Stanford, CA 94305, USA
3Department of Medicine, Division of
Oncology, Stanford University School
of Medicine, Stanford, CA 94305, USA
4Department of Genetics, Stanford
University School of Medicine,
Stanford, CA 94305, USA
5http://med.stanford.edu/curtislab.html

*Correspondence:
cncurtis@stanford.edu (C.N. Curtis).

Trends in Genetics, August 2018, Vol. 34, No. 8 https://doi.org/10.1016/j.tig.2018.05.007 639
© 2018 Elsevier Ltd. All rights reserved.

mailto:cncurtis@stanford.edu
https://doi.org/10.1016/j.tig.2018.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tig.2018.05.007&domain=pdf


The Role of Intratumor Heterogeneity and Non-genetic Factors in
Resistance to Targeted Therapy
There is growing evidence that (epi)genetic and phenotypic heterogeneity within a tumor [intra-
tumor heterogeneity (ITH); seeGlossary] contributes to resistance [14]. High ITH is associated
with poor prognosis in head and neck cancer [15], lung cancer [16], ovarian cancer [17], and in
pan-canceranalyses [18].High ITH implies that thetumor ismore likely toharbora rarepre-existing
resistant subclone and increases the likelihood that only a subset of tumor cells has the specific
molecular aberration targeted by the therapy. Treatment targeting subclonal driver mutations
hasbeen associatedwith resistanceand recurrence in chronicmyeloid leukemia [19] andmultiple
myeloma [20]. Similarly, treatments targeting subclonal copy number gains (versus clonal high-
level gains) yielded suboptimal clinical benefit in gastric cancer patients treated with a fibroblast
growth factor receptor inhibitor [21]. A better understanding of genetic ITHmayexplainwhy some
patients who express specific molecular markers (at least in a single diagnostic sample) exhibit
poor responses. There is a critical need to understand resistance as it arises in heterogeneous
tumors and develop strategies to circumvent it.

Genetic heterogeneity provides a rich substrate for the emergence of resistance under
treatment-selective pressures, but it is not the only factor. While most targeted therapies
are directed toward genetic alterations, epigenetic and microenvironmental causes of resis-
tance are gaining greater recognition. Such epigenetic alterations can arise on relatively fast
time scales due to varied microenvironmental influences resulting in heterogeneous gene
expression patterns. This rapid change in gene expression can cause secondary resistance
and will confound treatment decisions that are based solely on genotype [22]. For example, in
melanoma cells, transcription-level variability, in the absence of corresponding genetic alter-
ations, has been shown to cause resistance. Rare, synchronous, high-level transcription of
multiple resistancemarkers combinedwith drug-induced epigenetic reprogramming led to
preservation of the resistance-inducing transcriptional state [23]. Similarly, in non-small cell lung
cancer (NSCLC) treated with anti-PD-1 checkpoint inhibitors, epigenetic upregulation of
alternative immune checkpoints led to resistance [24], providing further evidence for non-
genetic mechanisms of resistance. The surrounding tumor microenvironment is also known to
play a role in cancer resistance, by protecting cancer cells from the full effects of infiltrating
drugs. This limits cancer cell death and can lead to secondary resistance as the longer-surviving
cancer cells continue to evolve under altered selective pressures [4]. In addition to providing a
physical barrier, the surrounding tumor microenvironment may also release paracrine signaling
factors that can alter tumor cell survival. In a murine model of Burkitt’s lymphoma, interleukin-6
and metalloproteinase 1 from the surrounding microenvironment affected cell survival following
chemotherapy treatment [25]. While their presence and role are still somewhat debated,
cancer stem cells, which are innately resistant to many treatments, are another potential
cause of poor treatment response [4].

Toward a Broader Target
Comparing a tumor to a forest, current treatment approaches focus on individual trees
(targetable genetic alterations present in a single sample). To combat resistance, an aerial
view of the entire forest (tumor cells and their ecosystem/microenvironment) is beneficial –
ideally with repeated longitudinal measurements to capture adaptive evolution. A spatially and
temporally resolved characterization of tumor evolution (Figure 1, Key Figure) would include
measurements of somatic alterations, as well as transcriptional and proteomic changes, using
techniques that preserve tissue architecture. Changes in the tumor epigenetic landscape (DNA
methylation and chromatin accessibility [26]) are also useful to trace. Although spatial profiling
techniques are in their relative infancy, methods for in situ gene expression profiling such as

Glossary
Cancer stem cells: a small subset
set of tumor cells (with stem-cell-like
self-renewal properties) that have
tumorigenic ability (see [4]). Cancer
stem cells are thought to be resistant
to treatment due to their quiescent
state (providing chemoresistance),
and many express multidrug
resistance transporters, antiapoptotic
proteins, prosurvival signaling
molecules [4].
Clone: a set of cells that descend
from a common ancestor and thus
share genetic features.
Collateral sensitivity: in adaptive
evolution, a phenomenon where an
increase in fitness in one
environment (e.g., the resistant cells
that survive during treatment) leads
to fitness changes in other
environments (e.g., the resistant cells
have increased sensitivity to other
drugs).
Driver mutation: a selectively
advantageous mutation that confers
a fitness (e.g., growth) benefit; in
cancer, ‘driver’ genes include gain-
of-function oncogenes and loss-of-
function tumor suppressors that
ultimately contribute to hallmarks of
cancers; while driver mutations can
be context dependent, canonical
drivers have been defined for
different cancer types [96]; a variety
of computational tools exist, but
many driver genes are identified
based on the over-representation of
damaging mutations or copy number
aberrations in the putative driver
genes.
Drug-induced epigenetic
reprogramming: drug treatment
can cause specific changes in
chromatin accessibility (via changes
in processes such as DNA
methylation or DNA histone
modifications); these epigenetic
changes can lead to altered gene
expression that can change cell fate
and/or characteristics.
FISSEQ: fluorescence in situ
sequencing; a method for genome-
wide RNA expression profiling of
intact cells and tissues; in this
method, spatial tissue architecture is
preserved allowing for RNA
localization studies.
Intratumor heterogeneity (ITH):
cellular, genotypic, or phenotypic
variation amongst cells within a
tumor; genetic variation is a
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necessary substrate for evolution and
contributes to fitness differences
amongst tumor cells.
MERFISH: multiplexed error-robust
fluorescence in situ hybridization
(FISH); an imaging technique that
can measure thousands of RNA
species in individual cells. A robust
combinatorial encoding scheme is
used for each RNA species of
interest; each RNA species is
identified by successive rounds of
hybridization that allow for the
detection and correction of readout
errors.
Selection: natural selection operates
on phenotypes, resulting in an
increased fitness advantage relative
to the resident population and
subsequent outgrowth of clones
harboring that trait; thwarting
selection can impede evolution.
Selective sweep: the selective
outgrowth (clonal expansion) of cells
such that positively selected clones
sweep to fixation, thereby replacing
the resident population; such
complete selective sweeps can only
occur if there is sufficient time before
the acquisition of the next driver
mutation.
Subclone: a subpopulation of cells
that share a common genetic feature
that is not present in the rest of the
population.

MERFISH [27] and FISSEQ [28] have been used in developmental biology studies with
extension to cancer. In addition, the MasSpec Pen has recently been developed and allows
for nondestructive mass spectrometry analysis of ex vivo and in vivo cancer tissue [29].
Techniques such as [211_TD$DIFF]multiplexed ion beam imaging (MIBI) [30] enable multiplexed proteomic
analysis of formalin-fixed paraffin-embedded archival tumor tissues. A multiscale, spatially and
longitudinally resolved view of tumor progression will allow for a more complete understanding
of the molecular and evolutionary determinants of resistance. Moreover, analysis of the
resultant measurements within an ecological and evolutionary grounded frameworkmay inform
principled therapeutic strategies [31]. Previously, spatial statistics developed by ecologists
have been used for the analysis of spatially resolved pathologic samples with phenotypic (cell
type) information. The ecological statistics can be used to identify patterns of interactions that
occur among cancer cells and their microenvironment (at the resolution of cell type) [32]. Such
statistics can be similarly applied to genomic and proteomic data to delineate heterogeneity
and interactions of resistant cell populations as they develop over time.

Unwanted Tumor Evolution Breeds Resistance
The theory of clonal evolution described by Peter Nowell over 40 years ago has been
foundational for understanding tumor initiation and progression [33]. The clonal evolution
model posits that after transformation of a single founding neoplastic cell, tumors evolve
through an iterative and dynamic process as they continuously accumulate somatic mutations,
some of which confer selective growth advantages. In the classic linear progression model,
stringent positive selection for phenotypic traits results in selective sweeps throughout the
course of tumor progression (see [34,35] for recent reviews). An implication of ongoing
selection is that multiple subclonal drivers may need to be targeted in addition to clonal
alterations to achieve effective disease control.

In recent years, other tumor progression models have been proposed, including effectively
neutral evolution and punctuated evolution. Under the Big Bang model of colorectal tumor
growth, after malignant transformation, the tumor grows as a single (terminal) expansion
composed of effectively equally fit clones [36], compatible with effectively neutral evolution.
In this model, the timing of a mutation is the fundamental determinant of its frequency in the final
tumor, rather than stringent selection for additional driver mutations. Subsequent work has
corroborated neutral evolution in other solid tumors [37–39], suggesting that it may be relatively
common. Importantly, under neutral evolution early clonal alterations (present in all tumor cells)
correspond to the key drivers of progression and may therefore represent ideal therapeutic
targets. However, the many subclones that subsequently diversify provide a potentially rich
substrate for the emergence of resistance in the context of treatment-selective pressure.
Punctuated evolution due to mutational bursts or cataclysmic genomic rearrangements has
also been described in multiple tumor types, including breast, prostate, and pancreatic cancers
[40–42]. The sudden accrual of a multitude of genomic changes represents another source of
alterations that may contribute to resistance.

Irrespective of the mode of evolution in treatment-naive tumors, the application of therapy
imposes selective pressure, resulting in the expansion of a pre-existing (potentially undetect-
able) resistant subclone. In addition, when cancer recurs due to treatment failure or resistance,
it often presents at organ sites beyond the primary tumor [43], suggesting the importance of
delineating the evolution of metastases in addition to primary tumors. As progression of disease
and treatment provide an expanding substrate for the selection of resistance, early detection of
cancer is likely to provide a much more tractable target. Indeed, at early time points, surgery
and/or radiotherapy without systemic therapy may be effective.
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Figure 1. (A) Longitudinal sampling can be used to track molecular changes during disease progression. In addition to solid tumor samples, liquid biopsies are
particularly useful for studying temporal evolution. (B) Spatial sampling can be used to characterize within and between lesion heterogeneity and to define tumor–
immune cell interactions, all of which play a role in resistance. Single-cell sequencing methods examine heterogeneity at an extremely local level. In situ, multiplexed
proteomic techniques, such as NanoString digital spatial profiling, allow for the study of the coevolution of the tumor and immune microenvironment during treatment.
(C) Multiscale profiling at the genomic, transcriptomic, proteomic, and epigenomic levels can provide a complete picture of functional and nonfunctional heterogeneity.
At the genomic level, tumor tissue can be characterized via the mutational landscape and copy number aberrations. Assay for transposase-accessible chromatin using
sequencing (ATAC-seq) can be used to study epigenetic alterations. ctDNA, circulating tumor DNA; WES, whole-exome sequencing; WGS, whole-genome
sequencing.
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Mathematical and Computational Modeling of Tumor Progression and
Resistance
Mathematical modeling of tumor evolutionary processes, including progression, metastasis, and
treatment, has become increasingly prevalent and provides a powerful tool to elucidate complex
biological processes when used in tandem with ground-truth experimental or clinical data [44].
Several mathematical models describing tumor evolutionary dynamics have provided important
insights into resistance (see [45] for a comprehensive review). These models generally make the
simplifying assumption that tumors are composed of well-mixed cell populations [46]. However,
spatial structure is a defining feature of solid tumors and can influence tumor dynamics [47] and
computational models that account for this may be particularly informative and reveal distinct
insights. In addition, local mutational geography and ITH can impact clonal dynamics and should
be incorporatedwhen simulating tumor evolution, although this introduces additional complexity.
Several spatial computationalmodels of primary tumor growth have been described.While these
models focuson important aspectsof tumorprogressionsuchasangiogenesis (includingdelivery
of chemotherapeutic agents to a tumor) [48] and tumor invasion in context of the surrounding
microenvironment [49], none explicitly model treatment.

These modeling frameworks can be further strengthened by using parameters derived from
patient genomic data. For example, a spatial agent-based model was developed to simulate
the growth of glandular epithelial (e.g., colon) tumors. This model employed statistical inference
techniques to deduce patient-specific evolutionary parameters using genomic data [36]. In
addition, the spatial growth of primary tumors under different evolutionary ‘modes’ (ranging
from effectively neutral growth to strong selection) was simulated using genomic data in
conjunction with the simulations. This method was able to classify the ‘modes’ of evolution
for individual patients by examining patterns of between-region genetic divergence [37].
Another spatial tumor model was developed that combines genetic evolution with spatial
growth and migration to show that resistant subclones are almost always present in clinically
detectable lesions [50]. Given the stochastic nature of resistance and the multiple evolutionary
trajectories that can occur during tumor growth, spatial computational models informed by
patient-derived tumor data can improve understanding of the dynamics and mechanisms of
resistance. Comparing ‘virtual’ tumors simulated under varied conditions can be used to
evaluate the evolutionary trajectories and resultant genomic patterns for a given patient. Such
models may also be used to assess therapeutic strategies and to inform study designs prior to
in vitro and in vivo preclinical testing. In the future, a more comprehensive spatial modeling
approach that incorporate ecosystem variables such as hypoxia, immune infiltration, and
stromal cell activation with genomic variables could further improve predictions regarding
the evolutionary trajectory of the cancer clones.

Tumor Sampling Strategies
Previous studies have shown that a single tumor sample is unlikely to capture the ITH present in
the entire tumor cell population [51–53] (Figure 2A). In a study of 100 NSCLC cases, over 75%
of the tumors had subclonal driver alterations, most of which would have appeared clonal in a
single biopsy [51]. In a study of glioblastoma, most patients had multiple molecular subtypes of
disease found in different regions within a single tumor [52]. In renal cancer, expression-based
profiling of samples from different regions can yield drastically different prognoses [53]. These
examples motivate approaches that account for spatial ITH when characterizing cancer
genomic landscapes. When studying the impact of therapy using paired pre- and post-
treatment samples, regional ITH can be particularly confounding as it is difficult to delineate
the appearance of a novel treatment-induced clone from a clone that was present initially but
missed due to inadequate sampling.
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Multiregion Sampling
Multiregion sequencing (MRS) accounts for tumor spatial heterogeneity by sampling and
profiling multiple regions from a single tumor specimen (Figure 2B). Compared to a single
sample, MRS better captures ITH and enables more robust discrimination of clonal versus
subclonal alterations, which in turn reflect the underlying evolutionary dynamics of the tumor.
The computational framework developed by Sun et al. [37] exploits MRS data to compute
genetic divergence between samples to distinguish effectively neutral evolution from strong
selection. Through simulation studies, they show that sampling additional tumor regions affords
greater power for distinguishing between different modes of evolution as compared to deeper
sequencing of fewer regions, with attendant implications for study design [37].

MRS can also illuminate functional ITH and potential convergent evolution, as originally
demonstrated in renal cell carcinoma [53,54]. In a study of multiple synchronous lung cancers,
MRS showed a high level of genomic heterogeneity (multiple distinct oncogenic alterations)
between lesions from the same patient. However, these heterogeneous aberrations often
mapped to a few key signaling pathways [55], suggesting convergent evolution and highlighting
the utility of MRS to delineate functional ITH.

Single-Cell Sequencing
Single-cell profiling can characterize tumor heterogeneity at unprecedented resolution. Single-
cell RNA-seq is becoming mainstream, but requires viable cells, making its application to
primary human tumor samples relatively limited [56,57]. Throughput and cost are other key
considerations for broader implementation of single-cell technologies. An additional challenge
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Figure 2. Sampling Strategies to Infer Evolutionary Dynamics. For the tumor schematics in (A) and (B), the green
background indicates clonal alterations present in all tumor cells, whereas other colors correspond to subclonal alterations
that may be undetected due to spatial heterogeneity. (A) Sequencing of single tumor sample (e.g., diagnostic biopsy)
illustrates that subclonal alterations and intratumor heterogeneity (ITH) may be overlooked. (B) Multiregion sequencing can
better capture ITH and enables discovery of clonal versus subclonal alterations, which can, in turn, reveal the underlying
evolutionary dynamics of the tumor. (C) Liquid biopsies allow for circulating tumor DNA (ctDNA) profiling, which provide a
tractable method for the longitudinal characterization of clonal dynamics in the context of therapy and can be used to
monitor the emergence of resistance prior to clinical manifestation on imaging.
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surrounding DNA-based single-cell assays is technical noise, which hinders accurate genotyp-
ing [58]. Current efforts have largely focused on single-cell copy number analyses to charac-
terize clonal evolution [59,40], with notable exceptions that have performed clonal genotype
inference [60]. Stochastic profiling, a related technique, provides another approach for uncov-
ering single-cell molecular programs by identifying coregulated, heterogeneously expressed
genes within small cellular populations [61]. As technological and bioinformatic methods
improve, single-cell approaches will increasingly be used to characterize tumor evolution,
likely in conjunction with bulk sequencing or MRS [62,63].

Liquid Biopsies
Since it is often impractical to obtain repeat biopsies to monitor solid tumor progression,
circulating tumor DNA (ctDNA) is useful for following longitudinal tumor progression. Nonin-
vasive liquid biopsies (such as blood or urine) yield ctDNA or circulating tumor cells that can
be used to characterize ITH and tumor growth dynamics [64] (Figure 2C). Studies of diverse
tumor types, including breast cancer [64], lung cancer [65,66], and lymphoma [67], indicate
that ctDNA can capture clonal evolution, although analyses are often restricted to small
numbers of mutations. Liquid biopsies also provide a potential approach for earlier cancer
detection [68]. This is particularly appealing since detection at a stage when surgical resection
is still feasible and treatments are more effective would significantly reduce cancer-related
mortality.

Liquid biopsies can be used tomonitor treatment response and the clonal dynamics that lead to
resistance. In NSCLC, longitudinal ctDNA from urine specimens was used to detect changes in
the frequency of EGFR-activating and EGFR-resistance mutations [69]. In chronic lymphocytic
leukemia patients who ultimately progressed following ibrutinib treatment, liquid biopsies were
used to detect the treatment-associated patterns of clonal evolution. The authors showed that
the kinetics of resistance depended on the pretreatment size and relative fitness of the resistant
subclone [13]. In acute myeloid leukemia, ultra-deep amplicon resequencing of serial blood
samples similarly highlighted the impact of treatment on clonal heterogeneity [70]. Thus, liquid
biopsies can capture the selective pressures imposed by treatment, track the outgrowth of
resistant subclones, andmay also inform adaptive therapeutic strategies that target the tumor’s
changing composition.

While ctDNA allows for noninvasive longitudinal sampling, there are limitations to its use in
monitoring the emergence of resistance. In particular, liquid biopsies do not provide spatial
information (i.e., organ location, primary tumor vsmetastasis) about the variants that may cause
resistance. It is also unknown whether all tumor types shed ctDNA at a similar rate [71]. Thus,
while ctDNA represents an important tool to survey the kinetics of resistance and minimal
residual disease, at present it is most informative when combined with tissue profiling.

Exploiting Tumor Evolution to Forestall Resistance
Suitable sampling strategies combined with computational models to simulate growth and
clonal dynamics under therapy will allow for treatment advances and may inform the develop-
ment of therapies that prevent the outgrowth of resistant subclones. In the following sections,
we discuss current treatment strategies that acknowledge the role of tumor evolution in both
the development and prevention of resistance.

Combination Therapy
Combination therapy, the use of multiple drugs simultaneously, has been used to successfully
combat resistance in the context of antimicrobials [72] and HIV therapies [73]. Since
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heterogeneous tumors have multiple subclones that may be targeted with distinct therapies,
combination therapy has been considered in this context to prevent the outgrowth of resistant
subclones (Figure 3A). A mathematical model was used to compare combination (simulta-
neous) versus sequential therapy in solid tumors and it was found that combination therapy
results in longer-term disease control. It was further noted that advanced cancers with greater
disease burden often require simultaneous treatment with three agents. Even with three drugs,
recurrence is inevitable in large tumors if there is the possibility of a mutation conferring cross-
resistance [46]. By constraining a tumor’s evolutionary trajectory and preventing the develop-
ment of more aggressive, resistant subclones, combination therapy can in principle impede the
evolution of tumor cells that would be resistant to future therapies. While these results are
encouraging, they depend on the number of potential resistance mutations that exist in the
cancer genome, which may vary considerably by therapy, tumor type, and across patients. In
addition, mechanisms of resistance can extend beyond point mutations to copy number
aberrations, epigenetic, transcriptional, and proteomic alterations, implying manifold paths
to resistance that are yet to be fully recognized.

Cancer immunotherapy
(harness an -tumor immune cells)

Tumor cells

Pro-tumor
immune cells

An -tumor
immune cells

Combina on therapy

Adap ve therapy (pulsa le treatment) 

Monotherapy(A) (B)

(C)

Time 

Tumor
burden

Sensi ve cells

Tumor
composi on

Resistant cells

Treatment

Treatment

Figure 3. Approaches to Forestall Resistance. (A) Tumor schematic comparing the effects of monotherapy and
combination therapy. Combination therapy treats a tumor with multiple drugs (different colored syringes) at the same time.
This therapeutic strategy constrains the evolutionary trajectory of the tumor and prevents the development of more
aggressive clones (orange and green cells marked with red stars) that would already be resistant to the second- or third-
line agents. (B) Tumor schematic describing treatments targeting tumor–immune cell interactions. Cancer immunotherapy
leverages the relationship between the tumor and its surrounding microenvironment to activate antitumor immune cells
(e.g., CD4+ cells, natural killer cells, and B cells) and downregulate protumor immune cells such as regulatory T cells. (C)
Tumor schematic describing adaptive therapy. Adaptive therapy constrains the evolution of tumors with multiple
competing subclones, some of which are resistant to therapy. In this schema, the blue cells are resistant to the treatment,
while the orange cells are sensitive. Treatment is given in a pulsatile manner such that the sensitive and resistant cell
populations grow in the ‘off’ and ‘on’ phases of treatment, respectively. Ideally, both populations are maintained, but
growth of the resistant subclone(s) is competitively constrained by neighboring sensitive cells.
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In complementary work, combination therapy strategies were explored to treat heterogeneous
tumors using a computational optimization approach based on random sampling of RNAi-
based perturbations. It was found that optimal drug combinations depend on the level of
genomic ITH and emphasize the inclusion of drugs with robust effects on all subpopulations
rather than superior efficacy in targeting a single clone [74]. For a thorough review on
considerations for modeling tumor dynamics toward the development of rational therapeutic
strategies, see [75]. In practice, combination targeted therapy has shown modest success in a
clinical trial studying patients with BRAF V600E-mutant colorectal cancer [76]. In addition,
combination therapy may be limited by the increased toxicity that accompanies simultaneous
treatments. An additional concern is that without enumerating subclones a priori and targeting
them, combination therapy may still leave patients vulnerable to resistance. Nonetheless, the
strategies outlined above provide guiding principles for evaluating their efficacy and generaliz-
ability in preclinical models.

In addition to the simultaneous combination therapy strategies discussed above, treatment
regimens that use multiple drugs sequentially have also been explored computationally and
experimentally. Tumor clonal evolution occurs in stages and each stage may have unique
therapeutic vulnerabilities to be exploited. Resistant cells that develop over the course of tumor
evolution can be collaterally sensitive to other drugs. Computationally generated fitness land-
scapes can be used to predict secondary resistance to front-line therapy, which can then be
addressed by administering a second drug sequentially [77]. Experimentally, sequential treat-
ment strategies and the role of collateral sensitivity have been explored in lung cancer cell
lines treated with ALK inhibitors. The authors found that the length of time between sequential
treatments may impact the evolving patterns of collateral sensitivity and cross-resistance [78].
Sequential drug therapy has also been explored as a way to combat antibiotic resistance and
such studies highlight issues relevant to cancer treatment. As with cancer therapy, the
mechanisms of resistance to b-lactam antibiotics are many; in one study, even with the
sequential use of 2–4 b-lactam antibiotics, Escherichia coli resistance was observed in over
70% of cases [79]. For both simultaneous and sequential combination therapy, the number of
potential resistance mechanisms that needs to be targeted is immense and makes this task
challenging.

Treatments Targeting Tumor–Immune Cell Interactions
Tumors exist as part of complex ecosystems that contain fibroblasts, endothelial cells, and
immune cells, in addition to the malignant tumor cells. Tumor evolution and continued
mutational processes lead to the development of tumor neoantigens (often functional, non-
synonymous mutations) that are recognized by T cells, activating an antitumor immune
response [80]. Unfortunately, by the time tumors are detectable in the clinic, they have evolved
mechanisms to evade the immune system, through the downregulation of T cell responses.
Cancer immunotherapy capitalizes on the interactions between the tumor and surrounding
immune cells by targeting the tumor’s evasion mechanisms and reactivating the immune
system to attack the tumor (Figure 3B). Many of the canonical immunotherapeutic agents,
such as anti-CTLA-4 therapy and anti-PD-1 therapy, are antibodies that block immune
checkpoint proteins on the cell surface. These checkpoint proteins are normally responsible
for inhibiting the immune system response. Hence, antibody-based checkpoint blockade
results in increased activation of T cells and a stronger antitumor immune response [80].
Despite the promise of immunotherapy, durable responses are limited to a subset of patients
[81,82], with changes in ITH and evolution of the tumor and surrounding microenvironment
during immunotherapy treatment [83] being potential reasons for treatment failure. Heteroge-
neity of neoantigens provides another explanation for the observed variability in response to
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checkpoint blockade immunotherapy [80]. A high burden of putative neoantigens (as is seen in
melanoma and NSCLC [81,82]) was associated with a stronger antitumor cytotoxic T cell
response and increased survival in a pan-cancer analysis [84]. There is a clear need to
understand which patients have immunologically ‘cold’ tumors that will never respond or will
develop resistance, versus patients with tumors can be made immunologically ‘hot’. Beyond
the need for improved patient stratification, enthusiasm should be tempered by the potential for
severe off-target immune toxicity (the generalized activation of the immune system can result in
widespread autoimmunity [81]). An improved understanding of the coevolution of the tumor
and immune microenvironment before and during immunotherapy is needed (potentially using
in situ spatial profiling techniques, such asMIBI [30] and NanoString digital spatial profiling [85]),
and may reveal mechanisms of response and resistance [83,84].

Adaptive Containment Strategies
Adaptive therapy seeks to constrain evolution in tumors with multiple competing subclones,
some of which are resistant to therapy. A key tenant of adaptive therapy is that resistance to
treatment comes at a fitness cost. For example, cells with membrane efflux pumps required to
expel chemotherapeutic agents have an energetic cost to the resistant clone [86]. Under
adaptive therapy, treatments are given in a pulsatile manner such that the sensitive and
resistant cell populations grow in the ‘off’ and ‘on’ phases of treatment, respectively
(Figure 2C). Ideally, both cell populations are maintained and growth is competitively con-
strained by one another, preventing expansion of the resistant subclone(s).

Preclinical studies have provided support for adaptive therapy. Adaptive therapy was shown to
increase the time to progression twofold to tenfold in in vitro breast cancer models [87] and was
also demonstrated to control growth of malignant melanoma xenografts treated with pulsatile
vemurafenib [5]. While adaptive therapy is yet not widespread in patient care, some early
successes have been achieved. Four melanoma patients who had developed resistance to
BRAF inhibitors showed significant clinical response to the same agents after a median
treatment-free period (drug holiday) of 8 months, although these responses were not lasting
[88]. In a recent clinical trial of 11 patients with metastatic castrate-resistant prostate cancer,
adaptive therapy maintained stable oscillations of tumor burdens in ten patients with reduced
cumulative drug (less than 50% of standard abiraterone dosing) [89]. The adaptive therapy
treatment regimen used in this clinical trial was based on a mathematical model, which
considered the eco–evolutionary interactions between subclones in the context of evolutionary
game theory, again highlighting the utility of modeling to guide initial hypotheses for testing
in vivo. These case studies highlight the importance of understanding the evolution of both
resistant and sensitive subclones on and off treatment. Adaptive therapy requires continual
monitoring of disease burden, which is traditionally performed via imaging, but could also be
profiled using ctDNA to quantify tumor burden and track tumor subclones simultaneously.

Concluding Remarks and Future Perspectives
Tumor progression is inherently an ecological and evolutionary process, which provides a
valuable and established theoretical basis upon which to study the dynamics of tumor growth
and resistance. To date, most studies have characterized tumors at a single timepoint (often
diagnosis or surgery), using bulk or dissociative methods. The resultant data, in turn, necessi-
tate the bioinformatic deconvolution of cellular populations [90,91] and the inference of
dynamics, rather than direct measurements.

Improved spatial and temporal monitoring of tumor evolution has the potential to yield far
greater resolution on these processes, but has been challenging for practical and technological

Outstanding Questions
What are the most informative meas-
urements of tumor evolution in space
and time?

Therapeutic strategies that alter popu-
lation dynamics within a tumor by miti-
gating selection can prevent unwanted
evolution. How can the response to
such adaptive therapies best be
monitored?

What is the role for computational
modeling and population genetics
approaches in studying the dynamics
of tumor growth and therapeutic
resistance?
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reasons (see Outstanding Questions). Newly developed techniques that measure in situ single-
cell gene and protein expression at high-throughput will be necessary for such efforts. These
methods preserve tissue architecture so that cells can be studied in context and should
facilitate the identification of rare resistant cell populations in lesions that are otherwise
challenging to characterize using dissociative methods requiring large amounts of input
material. Moreover, such methods may delineate tumor microenvironmental differences
between responders and non-responders. Multiplexed proteomic approaches, in particular,
hold the tantalizing promise of revealing the canalization of resistance mechanisms at a
signaling level (amidst the vast genomic heterogeneity) with accompanying strategic thera-
peutic implications.

In tandem, patient-derived organoid models [92] and xenografts [93] have been shown to
preserve the molecular and morphological characteristics of primary patient samples while
yielding a renewable source of high-quality material. As such, these represent powerful plat-
forms for drug screening [93], studying treatment response [94,95], and improving our under-
standing of the dynamics andmechanisms of resistance. Moreover, they are amenable to facile
genetic manipulations, lineage tracing, and rapid functional and phenotypic readouts. These
experimental systems complement tissue correlative studies in primary patient samples and
when coupled with iterative computational modeling, will contribute to a systematic under-
standing of the evolutionary dynamics and mechanisms of tumor progression and therapeutic
resistance. A long-range goal of such efforts will be to develop strategies to forestall resistance
and to predict the future course of disease for individual patients.
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